A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations

نویسندگان

  • Alexander Kurganov
  • Doron Levy
چکیده

We present a new third-order, semidiscrete, central method for approximating solutions to multidimensional systems of hyperbolic conservation laws, convection-diffusion equations, and related problems. Our method is a high-order extension of the recently proposed second-order, semidiscrete method in [A. Kurgonov and E. Tadmor, J. Comput Phys., 160 (2000) pp. 241–282]. The method is derived independently of the specific piecewise polynomial reconstruction which is based on the previously computed cell-averages. We demonstrate our results by focusing on the new third-order central weighted essentially nonoscillatory (CWENO) reconstruction presented in [D. Levy, G. Puppo, and G. Russo, SIAM J. Sci. Comput., 21 (1999), pp. 294–322]. The numerical results we present show the desired accuracy, high resolution, and robustness of our method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations

We introduce new Godunov-type semidiscrete central schemes for hyperbolic systems of conservation laws and Hamilton–Jacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation and can be viewed as a generalization of the schemes from [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282; A. Kurganov and D. Levy, SIAM J. Sc...

متن کامل

Maximum principle preserving high order schemes for convection-dominated diffusion equations

The maximum principle is an important property of solutions to PDE. Correspondingly, it’s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO s...

متن کامل

A total variation diminishing high resolution scheme for nonlinear conservation laws

In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A Gas-Kinetic BGK Solver for Two-Dimensional Turbulent Compressible Flow

In this paper, a gas kinetic solver is developed for the Reynolds Average Navier-Stokes (RANS) equations in two-space dimensions. To our best knowledge, this is the first attempt to extend the application of the BGK (Bhatnagaar-Gross-Krook) scheme to solve RANS equations with a turbulence model using finite difference method. The convection flux terms which appear on the left hand side of the R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000